سوال چهارم الگوریتم خوشه بندی،امیرحسینی نژاد - نسخهی قابل چاپ +- تالار گفتگوی کیش تک/ kishtech forum (http://forum.kishtech.ir) +-- انجمن: پردیس فناوری کیش (http://forum.kishtech.ir/forumdisplay.php?fid=1) +--- انجمن: دانشگاه جامع علمی و کاربردی (http://forum.kishtech.ir/forumdisplay.php?fid=7) +---- انجمن: **مرکز علمی و کاربردی کوشا** (http://forum.kishtech.ir/forumdisplay.php?fid=42) +----- انجمن: درس هوش مصنوعی - جمعه - ترم اول - 1403 (http://forum.kishtech.ir/forumdisplay.php?fid=332) +----- موضوع: سوال چهارم الگوریتم خوشه بندی،امیرحسینی نژاد (/showthread.php?tid=82231) صفحهها:
1
2
|
سوال چهارم الگوریتم خوشه بندی،امیرحسینی نژاد - Amir Hosseininezhad - 20-05-2024 نحوه عملکرد الگوریتم های DBSCAN و سلسله مراتبی خوشه بندی را بنویسید. RE: سوال چهارم الگوریتم خوشه بندی،امیرحسینی نژاد - Mohsen khazaei - 20-05-2024 الگوریتم DBSCAN خوشه بندی DBSCAN با یک نقطه شروع دلخواه و بازدید نشده شروع می شود . همسایگی این نقطه با استفاده از فاصله اپسیلون ε استخراج می شود )کلیه نقاط که در فاصله ε قرار دارند نقاط همسایگی هستند(. اگر تعداد کافی از نقاط ) MinPoint ( در این محله وجود داشته باشد ، فرآیند خوشه بندی آغاز می شود و نقطه داده فعلی به اولین نقطه در خوشه جدید تبدیل می شود. RE: سوال چهارم الگوریتم خوشه بندی،امیرحسینی نژاد - mohsenboostani - 21-05-2024 (20-05-2024, 04:00 PM)Amir Hosseininezhad نوشته است: نحوه عملکرد الگوریتم های DBSCAN و سلسله مراتبی خوشه بندی را بنویسید.الگورینم سلسله مراتبی به دو روش عمل مبکند : روش پایین به بالا یا تجمیعی: در ا ین تکنیک هر نقطه را به یک خوشه خاص، اختصاص می دهد روش بالا به پایین یا تقسیمی: خوشه بندی سلسله مراتبی از بالا به پایین بر عکس عمل می کند. عملکرد الگوریتم های DBSCAN DBSCAN با یک نقطه شروع دلخواه و بازید نشده شروع می شود . همسا یگی این نقطه با استفاده از فاصله اپسیلون ( ε ) استخراج می شود کلیه نقاط که در فاصله ε قرار دارند نقاط همسای گی هستند . اگر تعداد کافی از نقاط MinPoint در ا ین محله وجود داشته باشد ، فرآیند خوشه بندی آغاز می شود و نقطه داده فعلی به اول ین نقطه در خوشه جدید تبدیل می شود. RE: سوال چهارم الگوریتم خوشه بندی،امیرحسینی نژاد - maryambozorgiii - 22-05-2024 (20-05-2024, 05:34 PM)Amir Hosseininezhad نوشته است: الگوریتم DBSCAN خوشه بندی (20-05-2024, 04:00 PM)Amir Hosseininezhad نوشته است: نحوه عملکرد الگوریتم های DBSCAN و سلسله مراتبی خوشه بندی را بنویسید. لگورینم سلسله مراتبی به دو روش عمل مبکند : روش پایین به بالا یا تجمیعی: در ا ین تکنیک هر نقطه را به یک خوشه خاص، اختصاص می دهد روش بالا به پایین یا تقسیمی: خوشه بندی سلسله مراتبی از بالا به پایین بر عکس عمل می کند. عملکرد الگوریتم های DBSCAN DBSCAN با یک نقطه شروع دلخواه و بازید نشده شروع می شود . همسا یگی این نقطه با استفاده از فاصله اپسیلون ( ε ) استخراج می شود کلیه نقاط که در فاصله ε قرار دارند نقاط همسای گی هستند . اگر تعداد کافی از نقاط MinPoint در ا ین محله وجود داشته باشد ، فرآیند خوشه بندی آغاز می شود و نقطه داده فعلی به اول ین نقطه در خوشه جدید تبدیل می شود. RE: سوال چهارم الگوریتم خوشه بندی،امیرحسینی نژاد - nadianazari - 23-05-2024 4-الگوریتم DBSCAN خوشه بندی DBSCAN با یک نقطه شروع دلخواه و بازدید نشده شروع می شود. همسایگی این نقطه با استفاده از فاصله اپسیلون (ε) استخراج می شود. (کلیه نقاط که در فاصله ε قرار دارند نقاط همسایگی هستند). اگر تعداد کافی از نقاط (MinPoint )در این محله وجود داشته باشد ، فرآیند خوشه بندی آغاز می شود و نقطه داده فعلی به اولین نقطه در خوشه جدید تبدیل می شود. الگوریتم سلسله مراتبی خوشه بندی روش پایین به بالا یا تجمیعی: در این تکنیک هر نقطه را به یک خوشه خاص، اختصاص می دهد. فرض کنید 11 نقطه داده وجود دارد. هر یک از این نقاط را به یک خوشه اختصاص می دهد و بنابراین در ابتدا 11 خوشه خواهیم داشت. هر نقطه به یک خوشه اختصاص داده می شود. سپس، در هر تکرار، نزدیکترین جفت خوشه، ادغام می شود و این مرحله تکرار می شود تا نهایتاً یک خوشه باقی بماند. ادغام هر دو خوشه نزدیک به هم تا زمانی که فقط یک خوشه داشته باشیم، ادامه می یابد. ما در هر مرحله خوشه ها را ادغام می کنیم. از این رو، این نوع خوشه بندی به عنوان خوشه بندی سلسله مراتبی افزایشی نیز شناخته می شود. روش بالا به پایین یا تقسیمی: خوشه بندی سلسله مراتبی از بالا به پایین بر عکس عمل می کند. به جای شروع با n خوشه (در صورت n نقطه داده)، با یک خوشه شروع می کند و تمام نقاط را به آن خوشه اختصاص می دهد. بنابراین، مهم نیست که ما 10 یا 1000 نقطه داده داشته باشیم. همه این نقاط در ابتدا متعلق به یک خوشه هستند. اکنون، در هر تکرار، نقاط نزدیک به هم را در یک خوشه قرار می دهد و این روند تکرار می شود تا زمانی که در نهایت هر کدام از نقطه ها به تنهایی درون یک خوشه قرار بگیرند. در این روش خوشه ها در هر مرحله تقسیم می شود. از این رو نام آن خوشه بندی سلسله مراتبی تقسیم کننده است. RE: سوال چهارم الگوریتم خوشه بندی،امیرحسینی نژاد - Ali Khodadadi - 24-05-2024 لگوریتم DBSCAN خوشه بندی DBSCAN با یک نقطه شروع دلخواه و بازدید نشده شروع می شود. همسایگی این نقطه با استفاده از فاصله اپسیلون (ε) استخراج می شود. (کلیه نقاط که در فاصله ε قرار دارند نقاط همسایگی هستند). اگر تعداد کافی از نقاط (MinPoint )در این محله وجود داشته باشد ، فرآیند خوشه بندی آغاز می شود و نقطه داده فعلی به اولین نقطه در خوشه جدید تبدیل می شود. الگوریتم سلسله مراتبی خوشه بندی روش پایین به بالا یا تجمیعی: در این تکنیک هر نقطه را به یک خوشه خاص، اختصاص می دهد. فرض کنید 11 نقطه داده وجود دارد. هر یک از این نقاط را به یک خوشه اختصاص می دهد و بنابراین در ابتدا 11 خوشه خواهیم داشت. هر نقطه به یک خوشه اختصاص داده می شود. سپس، در هر تکرار، نزدیکترین جفت خوشه، ادغام می شود و این مرحله تکرار می شود تا نهایتاً یک خوشه باقی بماند. ادغام هر دو خوشه نزدیک به هم تا زمانی که فقط یک خوشه داشته باشیم، ادامه می یابد. ما در هر مرحله خوشه ها را ادغام می کنیم. از این رو، این نوع خوشه بندی به عنوان خوشه بندی سلسله مراتبی افزایشی نیز شناخته می شود. روش بالا به پایین یا تقسیمی: خوشه بندی سلسله مراتبی از بالا به پایین بر عکس عمل می کند. به جای شروع با n خوشه (در صورت n نقطه داده)، با یک خوشه شروع می کند و تمام نقاط را به آن خوشه اختصاص می دهد. بنابراین، مهم نیست که ما 10 یا 1000 نقطه داده داشته باشیم. همه این نقاط در ابتدا متعلق به یک خوشه هستند. اکنون، در هر تکرار، نقاط نزدیک به هم را در یک خوشه قرار می دهد و این روند تکرار می شود تا زمانی که در نهایت هر کدام از نقطه ها به تنهایی درون یک خوشه قرار بگیرند. در این روش خوشه ها در هر مرحله تقسیم می شود. از این رو نام آن خوشه بندی سلسله مراتبی تقسیم کننده است. RE: سوال چهارم الگوریتم خوشه بندی،امیرحسینی نژاد - a.zamani - 24-05-2024 الگوریتم DBSCAN خوشه بندی DBSCAN با یک نقطه شروع دلخواه و بازدید نشده شروع می شود. همسایگی این نقطه با استفاده از فاصله اپسیلون (ε) استخراج می شود. (کلیه نقاط که در فاصله ε قرار دارند نقاط همسایگی هستند). اگر تعداد کافی از نقاط (MinPoint )در این محله وجود داشته باشد ، فرآیند خوشه بندی آغاز می شود و نقطه داده فعلی به اولین نقطه در خوشه جدید تبدیل می شود. الگوریتم سلسله مراتبی خوشه بندی روش پایین به بالا یا تجمیعی: در این تکنیک هر نقطه را به یک خوشه خاص، اختصاص می دهد. فرض کنید 11 نقطه داده وجود دارد. هر یک از این نقاط را به یک خوشه اختصاص می دهد و بنابراین در ابتدا 11 خوشه خواهیم داشت. هر نقطه به یک خوشه اختصاص داده می شود. سپس، در هر تکرار، نزدیکترین جفت خوشه، ادغام می شود و این مرحله تکرار می شود تا نهایتاً یک خوشه باقی بماند. ادغام هر دو خوشه نزدیک به هم تا زمانی که فقط یک خوشه داشته باشیم، ادامه می یابد. ما در هر مرحله خوشه ها را ادغام می کنیم. از این رو، این نوع خوشه بندی به عنوان خوشه بندی سلسله مراتبی افزایشی نیز شناخته می شود. روش بالا به پایین یا تقسیمی: خوشه بندی سلسله مراتبی از بالا به پایین بر عکس عمل می کند. به جای شروع با n خوشه (در صورت n نقطه داده)، با یک خوشه شروع می کند و تمام نقاط را به آن خوشه اختصاص می دهد. بنابراین، مهم نیست که ما 10 یا 1000 نقطه داده داشته باشیم. همه این نقاط در ابتدا متعلق به یک خوشه هستند. اکنون، در هر تکرار، نقاط نزدیک به هم را در یک خوشه قرار می دهد و این روند تکرار می شود تا زمانی که در نهایت هر کدام از نقطه ها به تنهایی درون یک خوشه قرار بگیرند. در این روش خوشه ها در هر مرحله تقسیم می شود. از این رو نام آن خوشه بندی سلسله مراتبی تقسیم کننده است. RE: سوال چهارم الگوریتم خوشه بندی،امیرحسینی نژاد - aminkhedri1 - 25-05-2024 لگوریتم DBSCAN خوشه بندی DBSCAN با یک نقطه شروع دلخواه و بازدید نشده شروع می شود . همسایگی این نقطه با استفاده از فاصله اپسیلون ε استخراج می شود )کلیه نقاط که در فاصله ε قرار دارند نقاط همسایگی هستند(. اگر تعداد کافی از نقاط ) MinPoint ( در این محله وجود داشته باشد ، فرآیند خوشه بندی آغاز می شود و نقطه داده فعلی به اولین نقطه در خوشه جدید تبدیل می شود. RE: سوال چهارم الگوریتم خوشه بندی،امیرحسینی نژاد - m.iravani - 31-05-2024 لگوریتم DBSCAN خوشه بندی DBSCAN با یک نقطه شروع دلخواه و بازدید نشده شروع می شود. همسایگی این نقطه با استفاده از فاصله اپسیلون (ε) استخراج می شود. (کلیه نقاط که در فاصله ε قرار دارند نقاط همسایگی هستند). اگر تعداد کافی از نقاط (MinPoint )در این محله وجود داشته باشد ، فرآیند خوشه بندی آغاز می شود و نقطه داده فعلی به اولین نقطه در خوشه جدید تبدیل می شود. الگوریتم سلسله مراتبی خوشه بندی روش پایین به بالا یا تجمیعی: در این تکنیک هر نقطه را به یک خوشه خاص، اختصاص می دهد. فرض کنید 11 نقطه داده وجود دارد. هر یک از این نقاط را به یک خوشه اختصاص می دهد و بنابراین در ابتدا 11 خوشه خواهیم داشت. هر نقطه به یک خوشه اختصاص داده می شود. سپس، در هر تکرار، نزدیکترین جفت خوشه، ادغام می شود و این مرحله تکرار می شود تا نهایتاً یک خوشه باقی بماند. ادغام هر دو خوشه نزدیک به هم تا زمانی که فقط یک خوشه داشته باشیم، ادامه می یابد. ما در هر مرحله خوشه ها را ادغام می کنیم. از این رو، این نوع خوشه بندی به عنوان خوشه بندی سلسله مراتبی افزایشی نیز شناخته می شود. روش بالا به پایین یا تقسیمی: خوشه بندی سلسله مراتبی از بالا به پایین بر عکس عمل می کند. به جای شروع با n خوشه (در صورت n نقطه داده)، با یک خوشه شروع می کند و تمام نقاط را به آن خوشه اختصاص می دهد. بنابراین، مهم نیست که ما 10 یا 1000 نقطه داده داشته باشیم. همه این نقاط در ابتدا متعلق به یک خوشه هستند. اکنون، در هر تکرار، نقاط نزدیک به هم را در یک خوشه قرار می دهد و این روند تکرار می شود تا زمانی که در نهایت هر کدام از نقطه ها به تنهایی درون یک خوشه قرار بگیرند. در این روش خوشه ها در هر مرحله تقسیم می شود. از این رو نام آن خوشه بندی سلسله مراتبی تقسیم کننده است. RE: سوال چهارم الگوریتم خوشه بندی،امیرحسینی نژاد - محبوبه عرب درازی - 02-06-2024 لگوریتم DBSCAN خوشه بندی DBSCAN با یک نقطه شروع دلخواه و بازدید نشده شروع می شود . همسایگی این نقطه با استفاده از فاصله اپسیلون ε استخراج می شود )کلیه نقاط که در فاصله ε قرار دارند نقاط همسایگی هستند(. اگر تعداد کافی از نقاط ) MinPoint ( در این محله وجود داشته باشد ، فرآیند خوشه بندی آغاز می شود و نقطه داده فعلی به اولین نقطه در خوشه جدید تبدیل می شود |