تالار گفتگوی کیش تک/ kishtech forum

نسخه‌ی کامل: کنترل رسوبات آسفالتین در چاههای نفتی
شما درحال مشاهده‌ی نسخه‌ی متنی این صفحه می‌باشید. مشاهده‌ی نسخه‌ی کامل با قالب‌بندی مناسب.
رفع رسوبات آسفالتین در سازندهای تولید کننده نفت و سیستمهای تولیدی طی سالها یکی از مشکلات اصلی در صنعت نفت بوده است .
انتخاب عاملهای کنترل کننده شیمیایی در گذشته به بررسی انحلال توده ای آسفالتین در نمونه های بازیافت شده از سیستمهای تولیدی محدود شده بود . اخیراً روش مورد قبول برای حل این مشکلات استفاده از حلالهای آروماتیکی نظیرگزیلن ، تولوئن و غیره می باشد .
این روش به استفاده از مقادیر زیاد این حلالها نیاز دارد . همچنین این روش به تعداد دفعات زیاد باید انجام شود . این مقاله نتایج آزمایشات بر روی میدانهای نفتی و کاربرد مواد شیمیایی کنترل کننده آسفالتین و استفاده از تستهای آزمایشگاهی برای از بین بردن رسوبات آسفالتین و استفاده از مواد شیمیایی بازدارنده رسوبات آسفالتین را شرح می دهد .
آزمایشات اولیه قدرت پراکنده سازی ، با آزمایش پخش کردن آسفالتین در هگزان آغاز شده است . برخی مواد شیمیایی که نتایج امیدوار کننده ای در انحلال و پراش آسفالتینها در محیطهای نامحلول حاوی هگزان ارائه کرده اند ، برای استفاده در میدانهای نفتی یا برای تست اضافی در آزمایش رفع رسوبات جاری سنگ انتخاب شده اند .
دستگاه آزمایش جریان درون نمونه ( core flow test apparatus ) روشی را برای آشنا شدن با تشکیل رسوب آسفالتین و مطالعه در رابطه با رفع آن با استفاده از عاملهای شیمیایی ارائه کرده است . استفاده از نمونه های سنگ و آسفالتینهای بدست آمده از منابع تولیدی ، این فرصت را به ما می دهد که بهترین مواد شیمیایی رفع کننده رسوبات آسفالتین را انتخاب کنیم .
آسفالتین ها ترکیبات پیچیده ناجور اتم و درشت حلقه ای شامل کربن ، هیدروژن ، سولفور و اکسیژن هستند . آنها در طبیعت به صورت درشت بوده و به شدت آروماتیکی هستند و در نفتهای خام به صورت مایسلهای به هم چسبیده یافت می شوند . رزینها و مالتینها که پیشنیازهای مولکولی آسفالتینها هستند ، ذرات آسفالتین منتشر شده را به هم می چسبانند . در حالی که آسفالتینها توسط سرهای قطبی مالتینها و رزینها احاطه شده اند ، دنباله های آلیفاتیکی آنها بطور فزاینده ای در فازهای نفت هیدروکربنها در حال افزایش است . وقتی نیروهای شیمیایی یا مکانیکی به اندازه کافی بزرگ شوند ، این گونه های به هم چسبیده و محکم شکسته می شوند و ذرات آسفالتین برای واکنش با آسفالتین ناپایدار اصلی و تشکیل توده های بزرگ و نهایتاً ته نشینی آماده می شوند .
این عاملهای ناپایدار دارای یک پتانسیل جریانی هستند که این پتانسیل جریانی باعث جریان سیال در محیطهای متخلخل سازند می شوند . این توده های آسفالتین توسط پتانسیلهای الکتریکی ، عاملهای مکانیکی و یا توسط عاملهای خارجی دیگر بوجود آمده اند که این عاملها می توانند اسید یا دیگر محرکها یا سیالهای سخت یا گازهایی که برای کمک کردن به بازیافت استفاده می شوند مانند co2 و دیگر گازهای امتزاجی باشند . این مواد با تغییر PH یا دیگر مشخصات نفت خام می توانند آسفالتینها را ناپایدار کنند .
چون ذرات آسفالتینها قطبی هستند ، ممکن است این ذرات در اثر خاصیتهای القایی در توده های ثانویه ، باردار شوند . همانطور که تجمع ادامه پیدا کرد ، توده های ذرات درشت آسفالتین پیدا خواهند شد . تأثیرات نقطه حباب مهم است ، زیرا این تأثیرات مکانیسم دفع مواد شیمیایی از توده های ناپایدار توده با سرهای آلیفاتیکی رزینها و مالتینها باعث می شود که یک بی تعادلی لحظه ای در ماهیت محیط اطراف ایجاد شود . این عدم تعادل لحظه ای برای دفع رزینها و مالتینها و ایجاد ناپایداری کافی می باشد . فرایندهای مکانیکی با چندمین راه حل این کار را آسان نموده اند ، اما مهمترین این راه حلها جابجایی اولیه از یک نقطه با فشار مشخص به یک نقطه با فشار کمتر می باشد . جریانهای امتزاجی با ایجاد غلظت بیشتر سرهای ناپایدار توده آسفالتین ، مشکل را شدت می بخشند .
 تستهای آزمایشگاهی
تستهای آزمایشگاهی ارائه شده برای آشکار کردن طرز عمل مؤثر مواد شیمیایی و انتخاب این مواد جهت استعمال در میدانهای نفتی ، شامل سه گونه تست می باشند . برای انتخاب مواد شیمیایی ای که در درجه اول برای پراکندگی و پخش آسفالتین کاربرد دارند ، از نوع تست انتخاب مواد شیمیایی پراکنده ساز استفاده می شود .
هدف این آزمایش تهیه یک محلول خام اولیه حاوی ۵ گرم رسوب حل شده در ۱۰۰ میلیلیتر گزیلن می باشد . سپس ۱۰۰ میلیلیتر هگزان را در تعدادی استوانه مدرج ۱۰۰ میلیلیتری ریخته و مقادیری مشخص از مواد شیمیایی پخش کننده را در هر استوانه اضافه می کنیم . یک میلیلیتر از محلول خام شامل آسفالتین را به هر کدام از استوانه ها اضافه کرده و محتوی آنها را خوب به هم می زنیم . بعد از مدت یک ساعت ، یک نمونه ده میلیلیتری از سطح ۷۰ میلیلیتری برداشته و با ۳۰ میلیلیتر گزیلن مخلوط می کنیم . مقدار نفوذ این مواد شیمیایی تا ۶۴۰ نانومتر محاسبه شده و با نتایج عملکرد دیگر مواد شیمیایی با کمترین مقدار نفوذ برای معلق کردن هرچه بیشتر آسفالتینها در گزیلن مطلوب است .
بیشتر نسخه های آزمایش پراکنده سازی توده های آسفالتین می تواند برای انتخاب حلالها و عاملهای پراکندگی این توده ها مورد استفاده قرار گیرد . در این تست ، یک قرص از رسوب آسفالتین با قرار دادن ۲ گرم آسفالتین تحت فشار pellet press و شکل گیری قرص در فشار بالا ، تشکیل می شود .
در ساخت این قرص تفاوتهای سطح و شکافها در نظر گرفته نمی شود که ممکن است این تفاوتها در قسمتهایی از رسوب آسفالتین مورد استفاده برای آزمایش ، خود را نشان دهند . این فاکتورها ممکن است نتایج این آزمایش را تحت تأثر قرار دهند . ۱۰۰ میلیلیتر هگزان را همراه مواد شیمیایی درخواست شده در یک استوانه ۱۰۰ میلیلیتری رخته و خوب مخلوط می کنیم . قرص آسفالتین ساخته شده را در استوانه قرار داده و اجازه داده می شود تا محتوی استوانه برای یک دوره زمانی راکد باشد . مقدار آسفالتینهای پخش شده در هگزان که به صورت یک قسمت تیره پیداست از روی استوانه مدرج خوانده می شود . مواد شیمیایی که بیشترین مقدار آسفالتینهای پخش شده را در کوتاهترین زمان تهیه کرده اند ، انتخاب می شوند .
این آزمایش به انتخاب یک سری مواد شیمیایی کمک می کنند که این مواد می توانند رسوبات آسفالتین را تحت تأثیر قرار داده و باعث پخش شدن آنها شوند . این آزمایش می تواند برای انتخاب یک سری مواد شیمیایی برای آزمایش core flow test نیز استفاده شود .
Core flow test برای انتخاب مناسبترین مواد شیمیایی بدست آمده برای رفع رسوبات آسفالتین از مواد اولیه سازند و کمک به احیای تراوایی نسبی استفاده می شود . این دستگاه شامل یک Hastler core holder ، پمپ گرادیانی کروماتوگرافی مایعات فشار بالا ، طیف سنج فوتوالکتریکی بدون توقف جریان ، ترانس دیوسر فشار و یک سیستم کامپیوتری جهت ثبت داده ها می باشد . برای آزمایشهای مغزه از مغزه field یا مغزه استاندارد Berea استفاده می شود . امروزه آزمایشهای مغزه در دمای اتاق انجام می شود . بعد از استقرار شرایط water wet و تعیین تراوایی مؤثر یک مغزه آسیب ندیده و استفاده از گزیلن به عنوان یک حلال شوینده یا یک فاز پیوسته ، آسیب به مغزه با قرار دادن ۷۵ میلیلیتر فاز پیوسته گزیلن به درون مغزه ، ایجاد می شود که این فاز پیوسته دارای یک درصد پراکندگی آسفالتین می باشد .
پراکندگی آسفالتین با خرد کردن رسوبات آسفالتین و اضافه کردن آنها به گزیلن ایجاد می شود . اگر هیچ رسوبی موجود نباشد نتیجه می گیریم که آسفالتین توسط هگزان در نمونه نفت خام میدان نفتی ته نشین شده است .
وقتی دیسپرسیون گزیلن / آسفالتین کاملاً مغزه را پر کرد ، حلال حامل گزیلن سراسر حجم چندمین مغزه را فرا خواهد گرفت تا بدین وسیله یک حد مبنا برای حذف گزیلن از رسوبات آسفالتین پیدا شود . از آنجایی که تعدادی از آسفالتینها تحت شرایط این آزمایش در گزیلن حل نمی شوند ، این حد مبنا بهترین حالتی که گزیلن می تواند رفع شود را برای آسفالتینهای مورد بررسی نشان می دهد و این حد مبنا به عنوان نقطه رفع مطلق گزیلن مشخص می شود . بنابراین نتیجه مواد شیمیایی انتخاب شده برای مقادیر مختلف عملی می باشد .
معمولاً در ابتدا یک pore volume برای تزریق تحت فشار در این راه کارهای شبیه سازی شده ، استفاده شده است . نتیجه این آزمایشات می تواند در شستشوی تحت فشار گزیلن به کار برده شود ، برای اینکه تأثیر مواد شیمیایی در رفع رسوبات داخل یک جریان نفتی مشخص شود . جریان داخل یک مغزه ممکن است به علت استفاده از راهکارهایی که در آنها مواد شیمیایی استفاده می شود ، معکوس شود . این معکوس شدن جریان درون مغزه از سمت تخلیه شده مغزه می باشد . خواسته شده که تزریق تحت فشار به کار رفته در یک چاه در طی یک ترتمان منطقه ای شبیه سازی شود . اگر درخواست شود که مغزه دوباره اشباع و جریان گزیلن دوباره از آن عبور داده شود ، یک مغزه می تواند برای چندین ساعت مورد بررسی و معالجه قرار گیرد .
فشار و نرخ جریان در یک مغزه اندازه گیری شده و در سیستم جمع آورنده داده ها ، ذخیره شده است . عبور سیال خروجی از مغزه به میزان ۴۳۰ نانومتر توسط دستگاه طیف سنج فوتو الکتریکی بدون توقف جریان اندازه گیری شده است . با رسم میزان عبور سیال خروجی از مغزه بر حسب غلظت تعیین شده با رقیق شدگی استاندارد آسفالتین در دیسپرسیون گزیلن برای داده های قرائت شده از سیال خروجی و مقایسه آنها با قانون بیر ، میزان آسفالتینهایی که رسوب شده اند ، رفع شده اند و در نمونه باقی مانده اند مشخص می شود .
توده آسفالتین بعد از هربار راندن رسوبات ، دوباره وارد مغزه می شود . جریان گزیلن دوباره مستقر می شود و تأثیر دیگر مواد شیمیایی بر روی مغزه بررسی می شود . تراوایی مؤثر با اندازه گیریهای جریان و فشار بدست آمده توسط این تست ، محاسبه می گردد . وقتی که تراوایی مؤثر نسبت به میزان رسوبات آسفالتین جدا شده رسم شود ، بهترین ماده شیمیایی برای درمان مخازن بدست می آید . برای نمونه نمودار رسم شده در شکل ۲ ، تراوایی اولیه بر اثر استفاده از گزیلن را ارائه می دهد . تراوایی به خاطر رسوبات آسفالتین نمونه ، کاهش می یابد و بهترین تراوایی بدست آمده تنها از بیرون راندن گزیلن و میزان جداسازی و رفع آسفالتین و اصلاح نتایج تراوایی بوسیله هر ماده شیمیایی تست شده ، ارائه می گردد .
در بسیاری از معالجات ( رفع رسوبات آسفالتین ) ، افزودن یک حلال متقابل تا حدود زیادی تراوایی نسبی را بهبود خواهد بخشید . هر چند ، افزایش ظرفیت حلال متقابل در خیلی موارد می تواند میزان جداسازی آسفالتین را کاهش دهد . حلال متقابل در اثر تماس مؤثر با رسوبات ، می تواند سبب water wetting ذرات آسفالتین شود ، ذرات آسفالتینی که در حلال قابل حل نفت ، مشکل زا می باشند .
گزیلن استفاده شده در core flow test به عنوان یک فاز حامل پیوسته ، برخی از رسوبات آسفالتینی خود را رفع کرده است . برای انجام آزمایشهای سخت در خلال آزمایش مواد شیمیایی ، هگزان می تواند به عنوان یک فاز حامل استفاده شود . هگزان هیچ رسوبی را رفع نخواهد کرد ، و سبب خواهد شد که رسوبات به صورت ته نشین شده باقی بمانند . نتایج آزمایش نشان می دهد که مواد شیمیایی انتخاب شده رفع رسوبات آسفالتین را کند خواهد کرد و تراوایی نسبی افزایش می یابد ، حتی وقتی هگزان به عنوان سیال حامل استفاده شده است .


https://kishindustry.com
audiobookkeeper.rucottagenet.rueyesvision.rueyesvisions.comfactoringfee.rufilmzones.rugadwall.rugaffertape.rugageboard.rugagrule.rugallduct.rugalvanometric.rugangforeman.rugangwayplatform.rugarbagechute.rugardeningleave.rugascautery.rugashbucket.rugasreturn.rugatedsweep.rugaugemodel.rugaussianfilter.rugearpitchdiameter.ru
geartreating.rugeneralizedanalysis.rugeneralprovisions.rugeophysicalprobe.rugeriatricnurse.rugetintoaflap.rugetthebounce.ruhabeascorpus.ruhabituate.ruhackedbolt.ruhackworker.ruhadronicannihilation.ruhaemagglutinin.ruhailsquall.ruhairysphere.ruhalforderfringe.ruhalfsiblings.ruhallofresidence.ruhaltstate.ruhandcoding.ruhandportedhead.ruhandradar.ruhandsfreetelephone.ru
hangonpart.ruhaphazardwinding.ruhardalloyteeth.ruhardasiron.ruhardenedconcrete.ruharmonicinteraction.ruhartlaubgoose.ruhatchholddown.ruhaveafinetime.ruhazardousatmosphere.ruheadregulator.ruheartofgold.ruheatageingresistance.ruheatinggas.ruheavydutymetalcutting.rujacketedwall.rujapanesecedar.rujibtypecrane.rujobabandonment.rujobstress.rujogformation.rujointcapsule.rujointsealingmaterial.ru
journallubricator.rujuicecatcher.rujunctionofchannels.rujusticiablehomicide.rujuxtapositiontwin.rukaposidisease.rukeepagoodoffing.rukeepsmthinhand.rukentishglory.rukerbweight.rukerrrotation.rukeymanassurance.rukeyserum.rukickplate.rukillthefattedcalf.rukilowattsecond.rukingweakfish.rukinozones.rukleinbottle.rukneejoint.ruknifesethouse.ruknockonatom.ruknowledgestate.ru
kondoferromagnet.rulabeledgraph.rulaborracket.rulabourearnings.rulabourleasing.rulaburnumtree.rulacingcourse.rulacrimalpoint.ruсайтlacunarycoefficient.ruladletreatediron.rulaggingload.rulaissezaller.rulambdatransition.rulaminatedmaterial.rulammasshoot.rulamphouse.rulancecorporal.rulancingdie.rulandingdoor.rulandmarksensor.rulandreform.rulanduseratio.ru
languagelaboratory.rulargeheart.rulasercalibration.rulaserlens.rulaserpulse.rulaterevent.rulatrinesergeant.rulayabout.ruleadcoating.ruleadingfirm.rulearningcurve.ruleaveword.rumachinesensible.rumagneticequator.rumagnetotelluricfield.rumailinghouse.rumajorconcern.rumammasdarling.rumanagerialstaff.rumanipulatinghand.rumanualchoke.rumedinfobooks.rump3lists.ru
nameresolution.runaphtheneseries.runarrowmouthed.runationalcensus.runaturalfunctor.runavelseed.runeatplaster.runecroticcaries.runegativefibration.runeighbouringrights.ruobjectmodule.ruobservationballoon.ruobstructivepatent.ruoceanmining.ruoctupolephonon.ruofflinesystem.ruoffsetholder.ruolibanumresinoid.ruonesticket.rupackedspheres.rupagingterminal.rupalatinebones.rupalmberry.ru
papercoating.ruparaconvexgroup.ruparasolmonoplane.ruparkingbrake.rupartfamily.rupartialmajorant.ruquadrupleworm.ruqualitybooster.ruquasimoney.ruquenchedspark.ruquodrecuperet.rurabbetledge.ruradialchaser.ruradiationestimator.rurailwaybridge.rurandomcoloration.rurapidgrowth.rurattlesnakemaster.rureachthroughregion.rureadingmagnifier.rurearchain.rurecessioncone.rurecordedassignment.ru
rectifiersubstation.ruredemptionvalue.rureducingflange.rureferenceantigen.ruregeneratedprotein.rureinvestmentplan.rusafedrilling.rusagprofile.rusalestypelease.rusamplinginterval.rusatellitehydrology.ruscarcecommodity.ruscrapermat.ruscrewingunit.ruseawaterpump.rusecondaryblock.rusecularclergy.ruseismicefficiency.ruинфоsemiasphalticflux.rusemifinishmachining.ruspicetrade.ruspysale.ru
stungun.rutacticaldiameter.rutailstockcenter.rutamecurve.rutapecorrection.rutappingchuck.rutaskreasoning.rutechnicalgrade.rutelangiectaticlipoma.rutelescopicdamper.rutemperateclimate.rutemperedmeasure.rutenementbuilding.rutuchkasultramaficrock.ruultraviolettesting.ru
сайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайт
сайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайт
сайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайт
сайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайт
сайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайт
сайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайт
сайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайт
сайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайт
сайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайт
сайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтсайтtuchkasсайтсайт